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Abstract. Large digital libraries have become available over the past
years through digitisation and aggregation projects. These large collec-
tions present a challenge to the new user who wishes to discover what is
available in the collections. Subject classification can help in this task,
however in large collections it is frequently incomplete or inconsistent.
Automatic clustering algorithms provide a solution to this, however the
question remains whether they produce clusters that are sufficiently co-
hesive and distinct for them to be used in supporting discovery and ex-
ploration in digital libraries. In this paper we present a novel approach
to investigating cluster cohesion that is based on identifying instruders
in a cluster. The results from a human-subject experiment show that
clustering algorithms produce clusters that are sufficiently cohesive to
be used where no (consistent) manual classification exists.

1 Introduction

Large digital libraries have become available over the past years through digiti-
sation and aggregation projects. These large collections present two challenges to
the new user [22]. The first is resource discovery: finding the collection in the first
place. The second is then discovering what items are present in the collection.
In current systems, support for item discovery is mainly through the standard
search paradigm [27], which is well suited for professional (or expert) users who
are highly familiar with the collections, subject areas, and have specific search
goals.

However, for the novice (or non-expert) user exploring, investigating, and
learning [16, 21] tend to be more useful search modalities. To support these
modalities the items in the collection must be classified according to a relatively
consistent schema, which is frequently not the case.



In many domains no standard classification system exists and, even if it
does, collections are often classified inconsistently. Additionally, where collections
have been formed through aggregation (e.g. in large-scale digital libraries) the
items will frequently be classified using different and incompatible classification
systems. Manual (re-)classification would be the ideal solution, however the time
and expense requirement when dealing with hundreds of thousands or millions
of items means that it is not a viable approach.

Automatic clustering techniques provide a potential solution that can be ap-
plied to large-scale collections where manual classification is not feasible. The
advantage of these techniques is that they automatically derive the cluster struc-
ture from the digital library’s items. On the other hand the quality of the results
can be variable and thus the choice of which clustering technique to employ is
central to providing an improved exploration experience.

The research questions posed at the start of this work was: Do automatic
clustering techniques produce clusters that are cohesive enough to be used to
support the exploration of digital libraries? We define a cohesive cluster as one
in which the items in the cluster are similar, while at the same time clearly dis-
tinguishable from items in other clusters. Our paper provides two major contri-
butions in this area. Firstly, we propose a novel variant of the intruder detection
task [6] that enables the measurement of the cohesion of automatically generated
clusters. Secondly, we apply this task to evaluate the cluster model quality of a
number of automatic clustering and topic modelling algorithms.

Our results show that the clusters are sufficiently good to be used in digital
libraries where manually assigned classifications are not available or not con-
sistent. The remainder of the paper is structured as follows: The next section
provides background information on the use of clustering in digital libraries,
their evaluation, and the clustering techniques evaluated in this paper. Section 3
describes the methodology used in the evaluation experiment and section 4 the
experiment results. Section 5 concludes the paper.

2 Background

The issues large, aggregated digital libraries present to the user were first high-
lighted in [22] who suggested manual classification by the user and automated
clustering as approaches for dealing with the large amounts of information pro-
vided by these digital libraries. Since then a number of digital library exploration
interfaces based on clustering documents [26, 9, 8] and search results [11, 28] have
been proposed. Most of these approaches were evaluated in task-based scenarios
and shown to improve task performance, however the cluster quality itself was
not evaluated.

2.1 Cluster Evaluation Metrics

Cluster evaluation has traditionally focused on automatic evaluation metrics.
They are frequently tested on synthetic or manually pre-classified data [17, 1]



or using statistical methods [29, 13]. However, these do not necessarily capture
whether the resulting clusters are cohesive from the user’s perspective.

There have been attempts at using human judgments to quantify the cohesion
of automatic clustering techniques. Mei et al. [18] evaluate the cohesion of Latent
Dirichlet Allocation topics in the context of automatically labelling these topics.
The number of changes evaluators make to a clustering has also been used to
judge cluster cohesion [24].

Chang et al. [6] devised the “intruder detection” task, where evaluators are
shown the top five keywords for an LDA topic to which a keyword from a different
topic is added. They then have to identify the added “intruder” keyword and
the success at identifying the intruder is used as a proxy to evaluate the topic’s
cohesion. The more cohesive a topic, the more obvious it is which keyword is the
intruder. The results of their work have been compared to a number of automatic
similarity algorithms and Pointwise-Mutual-Information (PMI) was identified as
a good predictor for the agreement between the evaluators [20].

2.2 Classification Models

This paper investigates three unsupervised clustering algorithms: Latent Dirich-
let Allocation (LDA) [5], K-Means clustering [14], and OPTICS clustering [2].
Hierarchical and spectral clustering algorithms were also investigated, but not
tested due to them either being too computationally complex for the data-set
size or producing only degenerate clusterings.

Latent Dirichlet Allocation (LDA) is a state-of-the-art topic modelling
algorithm, that creates a mapping between a set of topics T and a set of items I,
where each item i ∈ I is linked to one or more topics t ∈ T . Each item is input
into LDA as a bag-of-words and then represented as a probabilistic mixture of
topics. The LDA model consists of a multinomial distribution of items over topics
where each topic is itself a multinomial distribution over words. The item-topic
and topic-word distributions are learned simultaneously using collapsed Gibbs
sampling based on the item - word distributions observed in the source collection
[10]. LDA has been used to successfully improve result quality in Information
Retrieval [3, 30] tasks and is thus well suited to support exploration in digital
libraries. Although LDA provides multiple topics per item, in this paper items
will only be assigned to their highest-ranking topic and the topics will be referred
to as clusters for consistency with the other algorithms.

K-Means Clustering is a frequently used clustering method [31] that takes
one input parameter k and assigns the n input items to k clusters and has been
used in IR [12]. Items are assigned to the clusters in order to maximise the intra-
cluster similarity while minimising the inter-cluster similarity. Cluster similarity
is calculated relative to the cluster’s mean value.

K-Means uses random initial cluster centres and then iteratively improves
these by assigning items to the most similar cluster and moving the cluster
centres to the mean of the items in the cluster.



OPTICS Clustering is a density-based clustering algorithm that does not
directly produce a cluster assignment, but instead provides an ordering for the
items that can then be used to create clusters with arbitrary density thresholds.
The algorithm defines a reachability value for each item which specifies the
distance to the next item in the ordering. Large reachability values represent
the boundaries between clusters and depending on what reachability threshold
is chosen, a larger or smaller number of clusters is generated.

3 Methodology

In this paper we propose a novel version of the “intruder detection” task that
evaluates the cohesion of the items in a cluster instead of just the cluster’s
keywords. To generate this “intruder detection” task, a cluster (the main cluster)
is chosen at random from the clustering model and four items are chosen at
random from the items allocated to that cluster. A second cluster, the intruder
cluster, is also chosen at random and a random item chosen from that cluster
as the intruder item. The five items, termed a unit, are then shown to the
participants and they are asked to identify the intruder item. For each of the
tested models the evaluation set consisted of 30 such units.

3.1 Source Data

The source data used in the experiments is a collection of 28,133 historical im-
ages with meta-data provided by the University of St Andrews Library [7]. The
majority (around 85%) of images were taken before 1940 and span a range of
160 years (1839-1992). The images mainly cover the United Kingdom, however
there are also images taken around the world. Most (89%) of photographs are
black and white, although there are some colour photographs. Of the available
meta-data fields only the the title, description, and manually annotated subject
classification are used in the experiments. On average, each image is assigned
to four categories (median=4; mean=4.17; σ = 1.631) and the items’ title and
description tend to be relatively short (word-count: median=23; mean=21.66;
σ = 9.5857). Examples are shown in Figures 1 and 2.

The collection was chosen for a two main of reasons: first, the collection has
a manually annotated subject classification that provides an evaluation baseline;
second, the data provides a realistic test case, as it was taken from an existing
library archive (enabling the generalisation of results to other digital libraries),
is large enough to make manual classification time-consuming, and at the same
time small enough that it can be processed in a reasonable time-frame.

3.2 Data Preparation

Each item’s title and description were processed using the NLTK [15] to carry out
sentence splitting and tokenization. The resulting bags-of-words are the input
into the three clustering algorithms. All processing was performed on an Intel i7
@1.73 GHz with 8GB RAM. Processing times are shown in Tab. 1.
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Fig. 1. Example of a cohesive unit taken from the “K-Means TFIDF” model. The
intruder is the last image, in bold font.
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Fig. 2. Example of a non-cohesive unit taken from the “K-Means TFIDF” model. The
intruder is the middle image, in bold font.

Model Wall-clock time
LDA 300 clusters 00:21:48
LDA 900 clusters 00:42:42
LDA + PMI 300 clusters 05:05:13
LDA + PMI 900 clusters 17:26:08
K-Means - TFIDF 09:37:40
K-Means - LDA 03:49:04
OPTICS - TFIDF 12:42:13
OPTICS - LDA 05:12:49

Table 1. Processing time (wall-clock) for the tested clustering algorithms and initial-
isation parameters



LDA Two LDA-based clusterings were created using Gensim [23], one with 300
clusters (“LDA 300”), one with 900 clusters (“LDA 900”). The reason for testing
two cluster numbers is that 300 clusters is in line with the number of clusters in
other work using LDA [30]. At the same time our work on visualising clusters has
hinted that clusters with around 30 items work best, which with 28000 items
leads to 900 clusters. Although LDA provides a list of topics with probabilities
for each item, the items are assigned only to their highest-ranking topic in order
to maintain comparability with the clustering results.

Previous work [20] indicates that pointwise mutual information (PMI) acts
as a good predictor of cluster cohesion. A modified cluster assignment model
designed to increase the cohesiveness of the assigned clusters was developed.
This approach is based on repeatedly creating LDA models and only selecting
those clusters that have sufficiently high PMI scores.

The algorithm starts by creating an LDA model for all items using n clusters.
The clusters are then filtered based on the median PMI score of their keywords
t1 . . . t5 (eq. 2), creating the filtered set Tg of “good” clusters (eq. 3). Items for
which the highest ranked cluster t ∈ Tg are assigned to that cluster. A new LDA
model is then calculated using the items for which their highest ranked cluster
t /∈ Tg using a reduced number of clusters n− |Tg|.

pmi (x, y) = log
p (x, y)

p (x) p (y)
= log

p (x | y)

p (x)
(1)

coh (t) = median {pmi (ti, tj) : i, j ∈ 1 . . . 5 ∧ i 6= j} (2)

Tg = {t ∈ T : coh(t) > 0} (3)

This process is repeated until either all items have been assigned to a cluster
or the LDA model contains no clusters with a coh (t) > 0, in which case all items
are assigned to their highest ranked cluster and the algorithm terminates. Two
models using this algorithm with 300 and 900 clusters were created (“LDA +
PMI 300” and “LDA + PMI 900”).

K-Means Two k-means classifications were produced, both with 900 clus-
ters. The first used term-frequency / inverse-document-frequency (TFIDF) vec-
tors, calculated from the items’ bags-of-words, to define each item (“K-Means
TFIDF”). As Tab. 1 shows the time required to create this model was very high,
thus a faster k-means clustering was created using the item-topic probabilities
from a 900-topic LDA model to define each item (“K-Means LDA”).

OPTICS The OPTICS clustering used the same input data as the k-means
clustering, creating two models (“OPTICS TFIDF” and “OPTICS LDA”). The
reachability threshold required to create a fixed set of clusters was automatically
determined for both models using an unsupervised binary search algorithm.



Upper- and Lower-bound Data An upper bound data-set was created based
on the manually annotated subject classifications provided in the original meta-
data. This classification has a total of 936 distinct clusters from which the 30
tested units were selected using the random algorithm described above.

To aid in the interpretation of the results a lower bound was determined
statistically as the number of cohesive clusters where the binomial likelihood
of seeing that number of correctly identified units out of 30 is less than 5%,
resulting in a lower bound of 3 correctly identified units.

Control Data To ensure that the participants took the task seriously and did
not simply select an answer at random, a set of 10 control units were created.
These were randomly selected from the manual subject classifications and then
manually filtered to ensure that the intruder was as obvious as possible.

3.3 Experimental Set-up

The experiment was constructed using an in-house crowdsourcing interface. In
the experiment each unit was displayed as a list of five images with their cap-
tions, and five radioboxes that the participants used to choose the intruder.
Participants were shown five units on one page, one of which was always a con-
trol unit. The four model units were randomly sampled from the full list of units
(the model units and upper bound units). The sampling took into account the
number of judgements already gathered for the units to ensure a relatively even
distribution of judgments. The experiment was run using a population recruited
from staff and students at our university.

A total of 821 people participated in the experiment, producing a total of
10,706 ratings. 121 participants answered less than half of the control questions
they saw correctly and have thus been excluded from the analysis, reducing the
number of ratings analysed to 8,840, with each unit rated between 21 and 30
times, with the median number of ratings at 27. The large variation is due to
how the filtered participants’ ratings were distributed, but has no impact on the
results as the evaluation metric takes the number of samples into account.

3.4 Evaluating Cohesion

The human judgements were analysed to determine which units were judged to
be cohesive. The metric used to determine cohesiveness is strict. A unit is judged
to be cohesive if the correct intruder is chosen significantly more frequently than
by chance and if the answer distribution is significantly different from a uniform
distribution (Fig. 1). The first aspect is tested using a binomial distribution and
testing whether the likelihood of seeing the observed number of correct intruder
judgements relative to the total number of judgements for the unit by chance is
less than 5%. This does not necessarily guarantee a cohesive cluster, as it does
not take into account the distribution of the remaining answers. If these were
evenly distributed, then even though the intruder was detected by a significant



number of participants, the remaining participants were evenly split and thus the
unit cannot be classified as cohesive. A χ2-test was used to determine whether
the answer distribution was significantly different (p < 0.05) from the uniform
distribution. If both conditions hold then the unit and with it the main cluster
the unit was derived from, are said to be cohesive.

In addition, a second metric was used to judge whether units were borderline
cohesive. A unit (and its main cluster) are defined as borderline cohesive if the
total number of judgements allocated to two of the five possible answers makes
up more than 95% of all judgements for that unit and one of the two answers
is the intruder. This covers the case where in addition to the intruder item
there is a second item that could also be the intruder. The main cluster such a
unit is derived from might not be ideal, but is probably acceptable to the user,
especially as the evaluation will show that even manually created clusters can
be non-cohesive. All remaining units are classified as “non-cohesive” (Fig. 2).

4 Results

Table 2 shows the number of “cohesive”, “borderline” and “non-cohesive” clus-
ters per model. The results clearly show that k-means clustering based on TFIDF
produces the most cohesive clusters. LDA with a large number of clusters also
works well. The impact of filtering by PMI seems to be negligible. OPTICS
clustering does not work well on the tested data-set.

Model Cohesive Borderline Non-Cohesive
Upper-bound 27 0 3
Lower-bound 3 0 27
LDA 300 clusters 15 6 9
LDA 900 clusters 20 4 6
LDA + PMI 300 clusters 16 4 10
LDA + PMI 900 clusters 21 2 7
K-Means - TFIDF 24 3 3
K-Means - LDA 20 0 10
OPTICS - TFIDF 14 2 14
OPTICS - LDA 16 0 14

Table 2. Experiment results for the various clustering algorithms and initialisation
parameters. “Cohesive” lists the number of clusters were the intruder was consistently
identified, “borderline” the number of clusters with two potential intruders, and “non-
cohesive” the number of clusters that are neither “cohesive” nor “borderline”.

Table 1 shows the time required to generate each of the clusterings. The
pure LDA models are fastest, while LDA + PMI with 900 clusters is the slowest
algorithm. OPTICS and k-means lie between these extremes. Using LDA item-
topic distributions for item similarity is faster than using TFIDF vectors.



4.1 Discussion

All models show a clear improvement on the lower bound and can thus be said
to provide at least some benefit if no manual classification is available. However,
the OPTICS and “LDA 300” models achieve cohesion for only about 50% of the
clusters. OPTICS is clearly not a good choice for the type of data tested, as it
is either slower or less cohesive than the other techniques.

The upper bound achives a very high score (90% of clusters cohesive), how-
ever even here there are three units that were not cohesive and these were further
investigated (Tab. 3). The non-cohesive unit #1 is mis-classified in the original
data and the intruder item was from the same geographic area as the main clus-
ter items, making it impossible to determine which is the intruder. That this was
picked up by the experiment participants is a good indication that the “intruder
detection” task can distinguish cohesive from non-cohesive clusters. Analysis of
the other two non-cohesive units shows that for both neither the image nor the
caption provide sufficient information to identify the intruder. However, when
the classification label is known, then the intruder can be determined. What this
implies is that as long as there is some kind of logical link between the items, a
certain amount of variation between the items is acceptable to human classifiers.

# Main cluster Intruder cluster
1 Renfrews all views Isle of May all views
2 Garages - commercial Colleges - technical
3 Soldiers Belfries

Table 3. Subject labels attached to the non-cohesive upper-bound units

“K-Means TFIDF” is clearly the best of the models, achieving cohesion for
80% of the units and including the 3 borderline cohesive units pushes the rate up
to 90%, matching the manual classification. Post-hoc analysis of the three border
line units shows that in all three cases the main cluster item also identified as
an intruder is linked to the other main cluster items via the description text,
which the participants did not see. This means that those three clusters should
also be acceptable when the users have access to all of the items’ meta-data.
The drawback with k-means is the long processing time rquired to create the
model. Using the LDA document-cluster distribution instead of TFIDF leads to
a significant reduction in processing time, however the quality of the resulting
model suffers and is lower than the pure LDA results.K-Means is thus only viable
for smaller collections, although the exact limit depends on what optimisations
[25] can be achieved through improved initialisation [4] or parallelisation [32].

Processing speed is the strength of the pure LDA models, with the best-
performing “LDA 900” model faster than “K-Means TFIDF” by a factor of
almost 14 (Tab. 1). It does not achieve quite as good classification results (66%
of units cohesive), but for data-sets that are too large to be clustered using k-
means it is a viable alternative. Of the four borderline units two were of similar



type as the k-means borderline units, however in the other two the item from
the main cluster identified as the intruder had no connection to the other main
cluster items, leading to a total of 22 (73%) acceptable clusters.

The results of the LDA models also show the necessity for models where
the individual clusters do not have too many items. The “LDA 300” and “LDA
+ PMI 300” models are significantly worse than their 900-cluster counterparts.
This also validates the use of 900 clusters in the k-means and OPTICS models.

While [19, 20] show that PMI is a good predictor for the inter-annotator
agreement, using it to filter clusters shows only minimal improvement. For both
the 300 and 900 cluster models a single additional cohesive unit is created.
Additionally in the 900 cluster case, PMI reduces the number of borderline
units. Considering the increase in processing time this is not a viable method.

5 Conclusion

Large digital libraries have become available over the past years through digitisa-
tion and aggregation projects. These large collections present a challenge to the
new user who wishes to discover what is available in the collections. Supporting
this discovery task would benefit from a consistent classification system, which is
frequently not available. Manual re-classification is prohibitively expensive and
time consuming. Automatic cluster models provide an alternative method for
quickly generating classifications.

This paper investigated whether clustering algorithms can generate cohesive
clusters, where a cohesive cluster is one in which the items in the cluster are
similar, while at the same time being distinguishably different from items in other
clusters. Latent Dirichlet Allocation (LDA), K-Means clustering, and OPTICS
clustering were investigated. To enable the comparison we proposed a novel
version of the “intruder detection” task, where the experiment participants have
to identify an item taken from a cluster and inserted into a set of four items
taken from a different cluster. The results show that this task provides a good
measurement for the cohesion of cluster models and can successfully identify
non-cohesive clusters and mis-classifications.

Using this evaluation metric we showed that k-means clustering on TFIDF
vectors produces the highest number of cohesive clusters, but is computation-
ally intensive and thus only viable for smaller collections. LDA-based models
with large cluster numbers provide the best cohesion – processing time trade-
off, allowing them to be applied to large digital libraries. We believe that both
algorithms create models where a sufficiently large number of clusters are cohe-
sive to allow them to be used where no (consistent) classification is available. We
intend to investigate if post-processing the clusters can further improve cohesion.
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